
This paper explores a hypothesis that considers the question how pressure may shorten the healing time of a hematoma or contu-
sion. The purpose is to present a mathematical model for predictions based on the hypothesis that can be quantitatively compared 
to measurements. The time trajectory of the fluid volume in the hematoma is modeled by two rate equations, with rate parameters 
linked to healing and fluid transfer mechanisms. The flux of fluid leaving the hematoma pocket is assumed to be pressure dependent, 
consistent with Starling’s principle, which asserts that the flux through a tissue layer is equal to the pressure gradient across the layer 
multiplied by the tissue hydraulic conductivity. Two contributions to the pressure are skin elasticity and applied compression. Shape 
measurements on two hematomas were made over the 10-week healing time. Model parameters are in fair agreement with values 
reported previously for wound contraction speed, tissue hydraulic conductivity, and skin elasticity.  
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Hematomas (Hood [1] 2018) can occur in aesthetic surgery and im-
plants of EP devices. To reduce pocket formation after pacemaker 
implants, specialized compression bandages (Valentino [2] 2015) 
can retard hematoma formation and speed up recovery. 

This paper investigates how pressure may shorten the healing 
time of a hematoma with a specific geometry, for example certain 
types of subcutaneous injuries and contusions. Two first-order rate 
equations describe the time-dependent geometry and rate of fluid 
removal through the floor of the hematoma pocket. Our initial hy-
pothesis was that the fluid flux rate was constant throughout heal-
ing. Analysis of our data showed that the measured flux rate had a 
value close to previously measured rates for the mechanism of tis-
sue hydraulic conductivity (Swabb [3] 1974). If so, the flux should 
be proportional to the pressure difference across the tissue layer 
at the pocket floor, and therefore implicitly depends on the pres-
sure within the hematoma compartment. Coupled with studies that 
show compression bandages may aid healing, we are motivated to 
explore the effects of pressure on the healing trajectory.

In 2015 and 2020 the author who uses an anticoagulant, developed 
a hematoma on the forearm near the elbow after a fall, and later on 
the chest after an EP device was replaced. In both cases, the skin 
was not broken, but internal bleeding continued for several days 
forming a large hematoma. Measurements were made of major, mi-
nor and height axes until the wound healed after 10 weeks.

Introduction
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The volume of subdural hematomas was investigated by Gebel et al  
[4] (1998) who compared computer- assisted volumetric analysis 
of 44 subdural hematomas to a formula for the volume of an el-
lipsoid. They found a strong correlation. Taking the difference be-
tween two such shapes, Kasner  [5] (1999) showed the formula can 
be extended to shell-like shapes.  In this study, the hematoma shape 
is a raised dome under the skin and was represented by an ellipsoid 
which has been sliced in half called a triaxial semi-ellipsoid, similar 
in shape to a “shield cabochon” jewel. In this approximation, the 
volume is one-half that of an ellipsoid: the footprint is an ellipse 
and both cross-sections are semi-ellipses. All three axes may have 
different values. Geometric details are developed in Appendix A. 

The footprint area decreases quadratically with time. This is shown 
in Appendix A, provided the edge of the wound advances toward 
the center according to a first-order rate equation,  

Eq. 1 is consistent with wound contraction (Romo [6] 2008) during 
the proliferation phase of wound healing in the band surrounding 
the footprint. The position of the wound edge is r(t), βr(0) is the 
wound edge-healing speed, and β is the wound contraction healing 
rate. 

The measured wound edge-healing speed for our hematomas was 
0.47 mm/day, somewhat less than surgical wounds with measured 
values of 0.75 mm/day for humans (Romo [6]) and 0.70 mm/day 
for pigs (Sharpe  [7] 2013, data analyzed by the author). 

Hematoma plasma fluid consists mostly of water, which moves 
across many biological membranes throughout the body by absorp-
tion in response to pressure and concentration gradients. For mod-
eling, we propose that hematoma fluids are removed by absorption 
through the tissue in the footprint beneath the hematoma. The vol-
ume of fluid removed per unit time is proportional to the surface 
area of the footprint multiplied by the absorption parameter,

V(t) is the volume and S(t) the footprint area of the hematoma (Ap-
pendix A). The absorption parameter α(t) is the flux of fluid (vol-
ume per second per unit area) moving to interstitial space beneath 
the footprint. Eq. 2 conforms with Darcy’s law, or more generally 
Starling’s principle, to be discussed at the end of the next section.

Before considering the influence of pressure, in this section we ex-
amine a special case where the flux is assumed to be time-indepen-
dent, identified as Case 1. This is the simplest assumption we can 
make, and it is useful in order to understand the associated implica-
tions. However, it will turn out in some situations to be inconsistent 
with Starling’s principle as we will discuss at the end of this section.  
To examine this case, we set α(t)=α0, a constant, in Eq. 2. Use Eq. 9 
(Appendix A) for the time dependence of the surface area, change 
variables using x=βt, and define normalized height f(x)=h(x)/h0 
and normalized volume V/V0 (the denominator is defined by Eq. 
10, Appendix A). The dimensionless time parameter is limited to 
the range 0 < x < 1, because the wound is closed when x = 1. The 
range is further restricted as we will see in a moment.

The parameter λ0 is proportional to the magnitude of the flux. It is 
also equal to the ratio of two times: the wound edge closure time 
1/β, and 2h0/α0 related to the time required to empty the pocket. 
These two events are coincident if λ0 = 1. 

The time required for the volume to decrease to zero is given by 
the solution to V(xroot) = 0. The time range is therefore limited to 0 
< x < xroot. The root of the resulting cubic equation is algebraically 
cumbersome; however, both the volume and root expressions sim-
plify if the parameter g =1 (meaning the footprint is circular rather 
than elliptical),

From Eq. 3 one finds,

Methods

Model Geometry     

Wound Edge Healing     

Eq. 1

Eq. 3

Eq. 2

Fluid Removal   

Constant Flux Assumption (Case 1)

λ0 = α0/2βh0

V(x)/V0
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The volume decreases to zero when x = x0. Physically, the flux is 
large enough to empty the pocket before x = 1, when the footprint 
has closed. The time range of our problem is limited to 0 < x < x0. 

If λ0 < 1, the flux rate is too small to remove all the fluid before the 
footprint closes, and fluid remains trapped. If this happens, the ge-
ometry of the current model may not be applicable, so we restrict 
our attention to situations where λ0 > 1.

The solution of Eq. 3 for the normalized height f(x) = h(x)/h0 is 

This simplifies if g=1

This simplifies further if λ0 = 1  to x0 = 1, and f(x) = 1-x.  

The cubic V(x)/V0 was fitted by regression to measurements of he-
matoma volume versus time. A preliminary result is that the fitted 
value of λ0 is very close to 1.0. Knowing that, one can estimate the 
value of the flux parameter α0. The value is similar to benchtop mea-
surements of flux for steady-state flow of plasma fluid through discs 
of subcutaneous tissue (Swabb [3]). Swabb found a linear relation-
ship between flux and pressure gradient across the tissue layer in 
accordance with Darcy’s law (devised in 1856 for soil mechanics). 
This law has been extensively studied for many types of tissue, and 
is comprehensively reviewed by Levick [8] (1987). 

If absorption follows Darcy’s law, or more generally Starling’s prin-
ciple (Matthay [9] 2006) from 1896 and later revisions (Michel  
[10] 1997) the flux through the hematoma floor depends on the 
pocket pressure minus the interstitial pressure. If the pocket pres-
sure should vary with time, the flux will also vary with time, in con-
flict with our Case 1 assumption that the flux is constant.

Here C is the hydraulic conductivity and δY is the thickness of the 
tissue layer beneath the pocket floor. If the last two terms are ab-
sent, this reduces to the usual form of Darcy’s law. Since most of 
fluid is leaving the cavity during the 10-week recovery period, we 
ignore short-time transients that may occur over the first few days 
and assume DPnet reaches a steady-state value. Eq. 4 means that the 
flux increases if the pressure increases, which will shorten the time 
required to empty the pocket.

Our hypothesis is that the fluid flux across the tissue at the floor 
of the pocket is enhanced by additional pressure from external 
compression and skin elasticity. Interactions of this kind have been 
studied in connection with rabbit joints (Knight [11] 1985) - re-
ferred to as a “non-linear pressure-flow relationship”. It is beyond 
our scope to speculate on the physiology, except to suggest linkage 
to Starling’s principle, which asserts that the flux is proportional to 
the pressure difference across the floor tissue. On both sides of the 
floor, there are hydrostatic and osmotic pressure components. We 
are focused on the slowly-varying situation lasting many weeks, 
where the net pressure difference moves fluid from the pocket to 
interstitial space in accordance with Starling’s principle.

An important application of Starling’s principle describes fluid flow 
to and from a capillary bed, with subtle interplay between hydro-
static and osmotic pressures. The capillary hydrostatic pressure 
(CHP) (Boron  [12] 2015) decreases from about 35 to 15 mm-Hg 
(above atmospheric pressure) as blood moves from the arteriole 
to venous ends of a capillary bed. The blood colloidal osmotic pres-
sure (BCOP, about 28 mm-Hg) arises from a higher concentration 
of plasma proteins inside the capillary, so water is attracted to the 
capillary interior toward the venous end. 

Similar mechanisms may occur with a hematoma. The pressure 
difference across the floor tissue that occurs naturally is denoted 
DPnet = Ppocket - Pinterstitial. We now add two additional pressures to the 
pocket term, namely the applied pressure and elastic pressure due 
to skin stretching. The last two terms are “excess-pressure” above 
atmospheric pressure, indicated by the symbol Δ. This modifies the 
flux, 

V(x)/V0 = 1 - λ0 + λ0 (1 - x)2

V(x0) = 0

Pressure Model

Eq. 4
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The elastic pressure depends on the elastic properties of skin. Inves-
tigations of pressure in balloons and hollow viscera has a venerable 
history including Faraday (1824) who invented the rubber balloon, 
Osborne [13] (1909) and DePascalis [14] (2018) who extended the 
analysis to include non-linear viscoelastic thick-walled shells. We 
follow Osborne’s model, which expressed the excess pressure (the 
difference of pressure inside and outside) in terms of viscera radius 
and elasticity. Osborne assumed a Hookian dependence of tension 
on strain described by Hooke’s constant (1678). An expression for 
the pressure based on Osborne’s model is proposed by Eq. 11,  Ap-
pendix  B. 

where K is Hooke’s elastic constant for skin, h(t) is the cavity height 
and ra is the footprint radius. 

Eq. 3 for Case 1 shows that the parameter g has a modest effect on 
height and volume, and so at this point, we assume g = 1, which 
simplifies the footprint shape from ellipse to circle. After substitut-
ing Eq. 4 (modified flux) and Eq. 9 (surface area) into Eq. 2, and 
expressing the result using dimensionless parameters, the pressure 
model becomes, 

Eq. 5

Eq. 6

Eq. 7

λA = (DPnet + ΔPapplied)⁄Pscale

ΔPelastic (0)= 4Kh0⁄ra
2 (0)

DPnet = λ0 Pscale

λB = Δ Pelastic (0)⁄Pscale 

Pscale = 2βh0 δY⁄C

The factor dividing the pressure terms is identified as Pscale, a unit 
of pressure. Using Swabb’s measurements of hydraulic conductivity 
(for Darcy’s Law) that relates flux to pressure gradient, our mea-
sured values of flux correspond to a pressure gradient of about 40 
mm-Hg/cm. Assuming the thickness of the tissue layer on the floor 
of the hematoma is δY≈0.1 cm, the inferred pressure drop across 

the floor is DPnet ≈ 4 mm-Hg. Since λ0 ≈ 1, we estimate Pscale≈4 mm-
Hg.

Case 1 is included in Eq. 6 as a special case when ∆Papplied = 0 and 
∆Pelastic = 0, so that λB→ 0 and λA → λ0.

In this sub-section, we examine a second situation that yields a 
straightforward analytic solution for the elastic pressure. We imag-
ine the elastic pressure term to be much larger than the constant 
pressure term, including DPnet, which we temporarily neglect by 
setting λA =0. Eq. 6 becomes (with solution),

The elastic pressure depends on the parameter λB, related to the 
elastic properties of skin. 

If the strain is less than about 0.4, the stress-strain relationship 
is linear (Daly [15] 1979). The values of Young’s modulus E range 
widely depending on skin location on the body, persons age (Paw-
laczyk [16] 2013) and type of test. Values range from about E =37 
to 1050 mm-Hg (Kalra [17] 2016). Young’s modulus is related to 
Hooke’s constant and depends on the membrane thickness as out-
lined in Appendix B. With E=37 mm-Hg, and skin thickness of 1 
mm, Hooke’s constant can be estimated, and from Eq. 6 the initial 
elastic pressure is about (0.8 to 8) mm-Hg. Considering the wide 
range for Young’s modulus just cited, much larger values are pos-
sible, and so the contribution of the skin-elasticity pressure may 
range from negligible for some persons to significant for others.

Elastic Pressure Unrealistically Large (Assumption for Case 
2)

Pressure Model Predictions
Eq. 6 quantifies how the combination of applied pressure and elas-
tic pressure may shorten recovery. It can be rearranged and writ-
ten (with solution),

 V(x)/V0
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Eq. 8

The solution (Wolfram [18] 2020) includes the exponential integral 
Ei(z); it was numerically evaluated using a power series with 24 
terms, with accuracy of a few percent provided z ≤ 15. The constant 
of integration was determined by the condition f(0) = 1. The total 
excess pressure (the sum of the pressure across the footprint tissue, 
applied pressure and elastic pressure) is found by substituting f(x) 
into the last line of Eq. 6. The solutions for Cases 1 and 2 are recov-
ered if (λA, λB) are equal to (1,0) and (0,1), respectively.

Volume trajectories predicted by Eq. 8 were compared to geometric 
measurements for two healing hematomas (Figure 1); the param-
eters (λA, λB) defined in Eq. 6 were estimated by chi-squared mini-
mization. The resulting values provide the best fit of the full model 
to the data for each hematoma. The parameter values (Table 1) can 
be interpreted as follows. The hematoma located on the forearm 
near elbow had a small footprint and a high dome that stretched the 
skin, consequently elastic pressure was large (with a best fit value 
of λB = 1.02) compared to the smaller constant pressure term (λA 
= 0.15). The other hematoma, located on chest, was the opposite, 
with a large footprint but shallow dome which did not stretch the 
skin, so the elastic pressure parameter was small (λB = 0.0) and the 
constant pressure parameter was comparatively large (λA = 1.0) . 

Predictions from Eq. 8 are shown in Figures 2 and 3, which pro-
vides two views of the time evolution, namely, hematoma thickness 
in Figure 2 and total volume in Figure 3.  For the full pressure mod-
el, the starting pressure when x=0 is λA + λB (normalized units). The 
time coordinate ranges between 0 and a value given by f (x0) = 0, 
corresponding to zero volume (this range limitation was described 
earlier for Case 1). The value of x0 was estimated using Eq. 8 by a 
numerical computation - the curves in Figure 3 stop at this value, 
at which point the pressure is λA.

Predictions were calculated for two initial values of the total pres-
sure (1.0 and 1.3). Figures 2 and 3 illustrate what occurs if the 
initial total pressure is assumed to be distributed in three differ-
ent ways between constant pressure (100%, 50%, 0%) and elastic 
pressure (0%, 50%, 100%). This results in six pairs of values of 
(λA, λB).  Figure 2 shows how increasing the initial total pressure 
causes the hematoma thickness to decrease to zero in a shorter 
time.  If the initial total pressure is equal to 1 pressure unit, the 
thickness decreases to zero in about 1 dimensionless time-unit. If 
this pressure is shared between constant and elastic components, 
according to 50:50% and 0:100% the thickness decreases to zero 
in about 0.6 to 0.7 time-units. One reason why the time to empty is 
shortened is that the elastic pressure increases slightly as shown 
in Figure 3 owing to the assumption that the edge healing speed is 

Results and Discussion

Hematoma 1  Hematoma 2
h0 1.4 cm 0.97 cm
S0 17 cm2 120 cm2

V0 16 cm3 78 cm3

g 0.63 0.66
λA  (constant pressure) 0.15 1.0 

λB  (elastic pressure) 1.02 0.0 
β/day 0.0104 0.0116

Table 1

Figure 1: Model compared to measured volume trajectories. 
Adjustable parameters λA  and λB were determined by chi-squared 

minimization with values listed in Table 1.
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A limitation of this pressure model arises from our assumption 
that the wound edge-healing rate is independent of pressure. This 
presumes that the healing wound edge advances at the same speed 
regardless of the pressure that may develop within the hematoma 
pocket, which is an over-simplification. As edge healing shrinks the 
wound footprint, this model can force the total pressure to exceed 
an (unknown) threshold value, causing the footprint to abruptly 
enlarge by tearing the edge. Information about the strength of the 
wound edge is needed to anticipate discontinuous events like this. 
In this paper’s treatment of the hypothesis, unreasonably large val-
ues of pressure can occur with certain combinations of the values of 
(λA, λB). The values chosen for Figures 2 and 3 avoid this condition. 

These examples suggest how elastic pressure and compression 
pressure can decrease the healing time. The flux increases with 
pressure, which shortens the time required to empty the pocket.

The purpose of this paper was to present a mathematical model 
of our hypothesis to enable predictions that can be quantitative-
ly compared to measurements. The hypothesis presumes fluid is 
removed from the floor of a hematoma by absorption following 
Darcy’s law or more generally, Starling’s principle. These laws im-
ply that the flux should depend on the incremental pressure inside 
the hematoma pocket arising from compression and elastic skin 
stretching. The resulting time-dependence of the model is surpris-
ingly complex, and demonstrates that careful measurements will 
be required to confirm all the predicted features. Apart from geo-
metric parameters, the model depends on just three physiological 
parameters: β (wound contraction rate), C (tissue hydraulic con-
ductivity) and K (Hooke’s constant for skin). 

The model offers a way to estimate healing time reduction enabled 
by external compression. Evidence of the proposed mechanism 
could be explored by experiments on similar types of hematomas 
using a tonometer to track the pressure trajectory. Such observa-
tions might confirm the hypothesis, and enable refinement of the 
model assumptions.

Conclusion 

a constant.  The time to empty is further shortened to the range of 
about 0.4 to 0.6 time-units if the total initial pressure is increased 
from 1.0 to 1.3.  

Figure 2: Predicted (normalized) thickness trajectories (the two 
numbers in the legend are λA, λB).

Figure 3: Predicted (normalized) pressure trajectories (the 
two numbers in the legend are  λA, λB). Curves are labeled in 

the same order as Figure 2.
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This Appendix uses the solution of Eq. 1 to find the time-dependence 
of the major and minor axes of the semi-ellipsoid that represents 
the hematoma shape.  The solution of Eq. 1 for the minor axis is  

where the edge-healing speed is βra (0). This expression applies un-
til βt→1 and the wound is closed. If the major axis heals with the 
same speed, we find 

where g = ra (0)/rb (0). As the surface area shrinks, the ratio of mi-
nor to major axes changes, until just before closure the wound is 
narrow and long, like a button hole. If g = 1, the footprint shape sim-
plifies from ellipse to circle. The footprint area decreases quadrati-
cally with time,

where S0 = πra (0)rb (0). The volume of the semi-ellipsoid is

where the initial value of the volume is 

Appendix B presents a parametric model for the elastic pressure as 
a function of the elastic parameters of skin and skin strain for the he-
matoma geometry. Following Osborne [13], the hematoma surface 
is represented by a section of a sphere formed by an elastic material 
obeying Hooke’s law. When the pocket forms, the skin is stretched 
to form a shallow dome, raised an amount h above the surrounding 
skin surface. The dome is envisioned as the cap of a balloon with ra-
dius R restrained by the edge of a rigid circular hole (the hematoma 
footprint) with radius r. Osborne shows that the balloon pressure 
(excess above external atmospheric pressure) is related to the ra-
dius and tension by ∆P = 2T/R. Before the skin is stretched, the ten-
sion is zero and so ∆P = 0. After the skin is stretched, from geometry 
the balloon radius is R = (r2+h2)/2h ≅ r2/2h. The tension is propor-
tional to Hooke’s constant K times the fractional stretching of the 
skin denoted ∆L/L, equal to the amount the dome arc length has 
stretched divided by the footprint diameter. Consequently ∆P ≅ 4K 
(h/r2)∆L/L. Expressions for the fractional stretching can be derived 
and depending on the geometric assumptions, and may introduce 

Support for the parametric dependence proposed by Eq. 11 can 
be found from the bulge test (Chen [19] 2015), a measurement 
technique used to determine the material properties of thin films 
of materials including polymers, where pressure is applied to one 
side of a thin membrane of material covering a rigid hole with ra-
dius r, and the deformation h is measured as a function of applied 
pressure. For small deformations, the data is represented by Eq. 
11, with measured pressure depending linearly on h and inversely 
on r2.  

Ghatak [20] (2013) derived a relation between the pressure and 
Young’s modulus E for a balloon with thickness Z made of mate-
rial that obeys Hooke’s law. For small values of strain, comparing 
Ghatak’s pressure expression with Osborne’s (which depends on 
Hooke’s constant K), we find K= 2EZ. 

The author wishes to thank an anonymous reviewer for a reference 
to earlier work on hematoma geometry and for suggestions that 
improved the presentation. 

Appendix A. Geometry 

Appendix B.  Pressure Inside Hollow Viscera
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